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General equations for integral and peak reflectivity and also the secondary extinction coefficient of 
crystals have been derived in unified form for a plate, cylinder and sphere in reflexion and transmission. 
The numerical calculations of these formulae have been carried out. The dependence on both the 
scattering and absorption coefficients, the mosaic spread parameter, the crystal size, and beam collima- 
tion are discussed separately with respect to the secondary extinction and the scattering geometry. 
Experimental verification conditions for the theoretical calculations are considered too. 

Introduction 

The wide use of single crystals of different materials 
in experimental neutron diffraction techniques ne- 
cessitates the theoretical research of reflectivity. But 
in single-crystal structural investigations the secondary 
extinction effect is of great importance and is cal- 
culated theoretically too. As is known from the 
kinematic theory, the reflectivity and the secondary 
extinction coefficient are mutually related. 

In the application to X-rays the above-mentioned 
problems have been considered by Zachariasen (1945) 
and James (1950). Detailed research of the intensity 
of thermal neutrons scattered by a mosaic crystal has 
been carried out by Bacon & Lowde (1948). They have 
derived the equation for the integrated reflectivity 
(R °) of a plane parallel plate crystal for an ideal 
parallel monochromatic neutron beam. The calcula- 
tion of the integrated reflectivity has been carried out 
in the rotating-crystal method, which is equivalent to 
the R ° for a fixed crystal onto which a neutron beam 
with infinite divergence impinges. 

The calculation of the finite divergence of a neutron 
beam has been carried out by Kunitomi, Sakamoto, 
Hamaguchi & Betsugaku (1964) in reflexion and by 
Dietrich & Als-Nielsen (1965) in transmission. The 
luminosity and resolution of the neutron spectrometer, 
taking into account the neutron beam collimation, 
have been considered by Sailor, Foote, Landon & 
Wood (1956), Abov (1960), Caglioti & Ricci (1962) 
and in more detail by Popovici & Gelberg (1966). 
Hamilton (1963) and Nosik (1966) have carried out 
the calculation of the secondary extinction coefficient 
(Es) for cylindrical and spherical crystals respectively. 

However in the above-mentioned papers in order to 
simplify the problem some approximations were 
taken into consideration, i.e. either the absorption or 
the neutron beam divergence was not taken into ac- 
count. The peak reflectivity (Rp) was not considered in 
general formulation in any of the papers. 

The purpose of the present study is to derive general 
equations (where ones are absent) for R °, Rp and Es 
for widely distributed crystal shapes, plate, cylinder 

and sphere, and to carry out the comparative nume- 
rical analysis by electronic computer. As a utilitarian 
task it was of interest to compile R °, Rp and Es tables 
convenient for wide practical use. The question of 
their experimental measurement by existing spectrom- 
eters is also discussed. 

General definitions and formulae 

We define the reflectivity as the ratio between the 
scattered neutron current (Px) and the incoming 
neutron current (P0). In general it is a function of the 
reflexion angle (0) and the deviation (A) of the mosaic 
block from the average orientation in accordance with 
the exact Wolf-Bragg condition: 

P1 
P(O,~)- eo" 

P1 is determined from the differential-equation 
system which describes parallel neutron beam propaga- 
tion in an ideally imperfect crystal. These equations have 
been given in their most general form by Moon & 
Shull (1964). 

As we are considerably interested in the reflectivity 
of a crystal as a neutron monochromator we will 
consider the system consisting of a fixed crystal and 
two collimators placed in front and behind the crystal 
with divergences el and e2 respectively. Hence, we 
first write the integrated reflectivity for monochromatic 
neutrons as 

co= f o) 
d - -  oo 

where the mosaic distribution function [W(A)] and 
the collimator acceptance function [nt(~0,)] are approx- 
imated by Gaussians: 

1 -2r/-~- (2) w ( a ) =  ] /2-~-exp - , 

( n~(~03=exp - e] ] ,  i = 1 , 2 .  (3) 
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Here r/, the 'mosaic spread', is the standard deviation 
of the distribution, (or is the angle between the trajec- 
tory of the neutrons and the central path through the 
collimator in horizontal projection, ~t/1/2 is the 
standard deviation related functionally to the collim- 
ator width st and length It by: 

s, (4) 
cq-  lt2l/ '~ 2 

The peak reflectivity will be expressed as the ratio 
between the scattered and the incoming neutron 
currents if the crystal is set in the exact Wolf-Bragg 
position (A = 0): Rp=P(O,O). (5) 

Consequently, if the integrated reflectivity for mono- 
chromatic neutrons is considered as the area under the 
reflexion curve, the peak reflectivity is the maximum 
ordinate of this curve. It is clear that Rp (2=const.)  
does not depend on the incoming neutron beam di- 
vergence. 

The integrated reflectivity for a white divergent beam 
is defined as the relation between the current of the 
scattered neutrons passed through the second collim- 
ator and the current of incoming neutrons passed 
through the first and the second collimators set to- 
gether. Taking into account the following relations [see 
for example, Dietrich & Als-Nielsen (1965)] 

(01=O--OB--A } 
(02=O--OB+A , (6) 

where 0B is the Wolf-Bragg angle, 0 is the reflexion angle 
of an individual beam, we may write in this case, 
according to Popovici, Gheorghiu & Gelberg (1968), 

RO = 1 ~ I~_oo I~_~o l~_oo nl((0x)P(O,A)n2((02) 

x 6((0~--~0z+2A)d(01d(02dA, (7) 
where 

N= f~_,,o l~_,,onl((01)n2((0z)d(~ol-(02)d(01d(02. (8) 

Analogously we may write for Rp(2¢const.)  

1 oo oo 

× a(el-(02+2~)a((02)d(0~d(02da, (9) 
where 

N ~ = S -  °°oo n~((0x)d(0~. (10) 

For the case 2--/:const. the integrated reflectivity may 
be represented as the area under the reflexion curve 
versus the angle between the trajectory of the neutrons 
and the central path through the second collimator; 
the peak reflectivity is the value proportional to the 
maximum ordinate at (02=0. 

The equations (1) and (7) may be written in the 
common form 

where 

R°=I~_oo 

1/2oqoh 

. =  

P(O,A) exp ( - - ) T e ] d A  

if 2=const .  

if 2#const .  

(11) 

(12) 

In addition, for a white neutron beam using (7) and (9) 
we obtain the following relation 

1 
Rp- cq1/z~ R° (13) 

if we put ee = cq/1/2. When ~1 -+ 0 Rp(2 # const.) -+ 
1Rp(2 = const.), and when el = ce2 = c~ R°(2 :¢ const.) = 
R°(2=const.). Thus the peak reflectivity for the white 
divergent neutron beam is always less than Rp for the 
monochromatic neutron beam; but integrated reflec- 
tivity values are equal for symmetrical collimation 
(0C1 = (~2) in both cases. This reveals the significant curve 
widening of reflected non-monochromatic neutrons 
compared with monochromatic neutrons. 

In order to describe the secondary extinction effect 
quantitatively the secondary extinction coefficient is 
usually introduced as the ratio between the integrated 
reflectivity R ° calculated with the secondary extinc- 
tion correction and integrated reflectivity R°d obtained 
without the extinction correction but taking into 
account the other factors: absorption, crystal geome- 
try, incident and scattered flux divergences: 

R o 

Es= RO d . (14) 

Therefore, the calculation of the secondary extinction 
coefficient is closely related to the calculation of re- 
flectivities. 

The equations describing integrated and peak re- 
flectivities for differently shaped single crystals for 
symmetrical reflexion and transmission are presented 
in general form in Table 1. All the formulae are ob- 
tained in the present paper (see the Appendix) except 
equations (15) and (17) which were first derived by 
Kunitomi et al. (1964) and Dietrich & Als-Nielsen 
(1965) respectively. The distinctive feature of equa- 
tions (15) to (18) is their validity for any neutron 
scattering angle. For the spherical and cylindrical 
single crystals the analytical equations for R ° and Rp 
can be obtained only in two boundary cases: 2 0 = 0  ° 
(forward scattering) and 20= 180 ° (back scattering). 

In Table 1 formulae are presented for the peak re- 
flectivity of monochromatic neutrons. For non- 
monochromatic neutrons Rp values may be obtained 
taking into account equation (13). 
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Corresponding equations for secondary extinction 
are presented in Table 2. Formula (28) was first 
derived by Dietrich & Als-Nielsen (1965) and formulae 
(29) and (30), without accounting for the divergence 
effect, by Hamilton (1957). 

Discussion 

(a) The calculation 

Reflectivit ies and  secondary  ex t inc t ion  coefficients 
of  plate,  cyl inder ,  and  sphere-shaped  single crystals  
were ca lcula ted  in reflexion and  t r ansmiss ion  by 
numer ica l  me thods  using the c o m p u t e r  BESM-6  
accord ing  to the fo rmulae  given in Tables  1 and  2 
wi th  the fo l lowing fixed var iab les :  

Q - 0 . 0 0 1 ;  0.005; 0.01; 0.05; 0.1; 1.0; 10.0; 
/t 

c = 0 . 0 1 ;  0.1; 0.5; 1.0; 2-0; 3.0; 4.0;  6.0; 10.0; 

17=4';  8' ;  16'; 32' ;  64' ;  

~z~=6'; 12'; 24 ' ;  48 ' ;  96' ;  

(The quantities Q/It and C are defined in the footnote 
to Table 1). 

Let us consider the principal regularities which 
follow from the present calculations. In Fig. 1 the 
dependence of R ° on the logarithm of the mosaic 
spread  for different  Q/lu values is i l lus t ra ted.  As one 
can see, in con t ra s t  to the do t ted  B a c o n - L o w d e  
curves the R ° curves, wi th  due regard for  the neu- 

Plate 

In reflexion 

In transmission 

Table 1. The analytical formulae for the integrated and peak reflectivities 

A exp (-Bx2/2)dx 
I-°°oo (1 + A exp--x2/2) + (1 + 2A exp--x2/2) ~/2 coth [C(1 + 2A exp--x2/2) i~2] R° = r/ 

A Rv= 
1 +A +(1 +2A) ~/~ coth [C(1 +2A) ~]  

s=~ i! 

Ro=½ exp ( -  C) [1 - e x p  ( -2AC)]  

(2A C) J 

I / j - I  + B 

(15) 

(16) 

(17) 

(18) 

Cylinder 

In reflexion, 
20 --- 180 ° 

In transmission, 
20=0 ° 

I ~n/2 A exp (--Bx2/2) COS ~0dxd~0 
R°=rl I°°_oodO ( l+Aexp_x2 /Z)+( l+ZAexp_x2 /2 )u2  coth[Ccos~o[l+2Aexp_x2/Z)X/2 ] (19) 

n/2 
Rv = (20) 

dO 

A cos (od~0 
1 + A + (1 + 2A) ~n coth [C cos 9(1 + 2A) x/2] 

RO=r/ ~ (--1)s +1 (2AC)S ~/2 
] / 2  exp ( - -C cos 9)(cos ~o) j+ ld~o 

s=1 J! ] / fZi-~B oo 

U -  exp t - C c o s   1E -exp ( -2AC cos cos 
dO 

(21) 

(22) 

Sphere 

In reflexion, 
20 = 180 ° 

In transmission, 
20 = 0 ° 

Notation 

A -  

I 4 ~n/2 (n[2 A exp (--Bx2/2) cos  2 ~0 cos  vdxd~od~ 
R°= r~ ~ I~-oo dO 30 (1 + A exp--x2/2)+ (1 + 2A exp--x2/2) 112 coth [Ccos ~0 cos ~(1 + 2A exp--x2/2) 1/2 (23) 

4 ~rt/2 ~n[2 A COS 2 (p COS Iff dgd~' 
Ro=-~-d0 d0 l+A+(l+2A)X/2coth[Ccos(ocos~t( l+2A)  i/2] (24) 

-.o 4 ./z~ ~ ( - 1 )  j+l (2AC) J erq2enl2 
~x = r / - -  ~/-- Z ----7i . . . . . . . . .  ~ ~ exp ( I  C cos ~ COS ~//) (COS ~)J+2(COS ~,)J+~d~0d,y (25) 

zc ~ 2 j = t  j .  I/f--i-+--B- .~o ,~o 

2 on/2 gn/2 2 
Rp = -~ ol0 ,JI0 e x p ( - C c o s  ¢pcos V) [ l - e x p ( - Z A C c o s  ~ocos ~)] cos ¢cos ~,d~pd~, (26) [ 

3 2 2 2 F N c  Q • B=  1 + 4r/2 /zD 
ur / /~  ' ~y c=  - -y  ; Q -  

1 - cylinder and sphere 
y = sin 0 - plate in reflexion 

cos 0 - plate in transmission 
2 is the wavelength; F is the structure factor 
Arc is the number of unit cells per cm 3 

sin 20 

/t is the linear attenuation coefficient allowing for the true absorption, the incoherent scattering and the thermal diffuse scattering 
D is the plate thickness (or diameter of cylinder or sphere) 
Coordinate x is defined as x = A/r/, coordinates ~0 and ~ are defined in (A4) 
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tron beam divergence, have their maxima in posi- 
tions determined by the effective collimation. Here the 
dependence of R ° on Q/p is shown too. In Fig. 2 the 
dependence of the integrated reflectivity on the neutron 
beam divergence is demonstrated. Analysing the pre- 
sent curves one can conclude the importance of op- 
timal collimator choice in the neutron diffraction 
technique. 

The comparison of the reflectivities of differently 
shaped single crystals in reflexion and transmission is 
shown in Fig. 3. It is seen that under otherwise identical 
conditions R ° is always larger in reflexion than in 
transmission and decreases in the order plate-cylin- 
der-sphere except for large C values. 

The relation Rp vs Q/p is illustrated in Fig. 4. As 
can be seen, peak reflectivity boundary values equal to 
½(2#const.) and I(2=const .)  are reached at small 
divergence of the incident beam and at large Q/lu 
values. 

Some regularities of the secondary extinction coeffi- 
cient are shown in Figs. 5-8. The dependence of E~ 
on size and shape of the specimen and on observation 
geometry is demonstrated in Fig. 5. Q/p, rl and % 
values are chosen close to the real existing ones in 
experimental situations. In this figure the strong 
dependence of secondary extinction on the specimen 
shape and the observation geometry is shown. It is 
important to note that the secondary extinction effect 

is appreciable at C=0.1 .  In Fig. 6 the secondary 
extinction coefficient dependence on the mosaic 
spread for a plate-shaped crystal in symmetrical re- 

16" 

// 

-~ =lO / /  

~=1 /// 

/ tl 

4 ~ =o,o~ . . . . . . .  , 

gu =O, OOl 

Fig. 1. Integrated reflectivity versus the crystal mosaic spread 
for a plate crystal at different Q/a values in reflexion (C= 
0-5; ~e = 24'); the dotted lines are the Bacon-Lowde curves 
(Bacon & Lowde, 1948). 

Table 2. The secondary extinction coefficient (E,) for single crystals of  plate, cylinder and sphere shapes in 
reflexion and transmission 

Plate 
f 

/ E~-- 
In reflexion 

t 

In transmission 

V7 
(1 --We ---~c) I:oo (1 + A exp--x2/2) + (1 + 2A exp--x2/2) 1/2 coth [C(1 + 2A exp--x2/2) 1/2] 

(27) 

oo (_ 1)j+1 1/B 
E,= J~l J-----~-- (2AC)J-' I/)-- 1 + B (28) 

Cylinder 

In reflexion, 
20 = 180 ° 

In transmission, 
20=0 ° 

exp (--Bx2/2) cos Cadxd~ 
(1 + A exp --X2/2) + (1 + 2A exp --X2/2) 1/2 coth [C cos Ca(1 + 2A exp --x2/2) t/2] 

i~ /2 [1-exp ( - 2 C  cos Ca)] cos ~dCa 

oo (_ 1)j+l 1/B /2 
./~1 J! (2AC)1-I I~ exp ( -  C c°s @) (c°s ca)J+'dca 

= I / i f + j -  1 
E, = - . . . . . . . . . . . . . . . . . . . .  ~/2 . . . . . . . . . . . . . . . . . . . . . .  

~o exp ( -  C cos ~) cos 2 cadca 

(29) 

(30) 

Sphere 

In reflexion, 
20 = 180 ° 

In transmission, 
20 = 0 ° 

i oo (rt/2 (n/2 exp (-- Bx2]2) cos z ca cos ~ dxdcadv 
-- - - - =  ...... 9 +  A ! + 2A exp--x'/2)'" coth rc cos cos + 2A e x p - x V 2 ) " ]  

~ A ~:/2 ~ / 2  COS 2 (peON ~t[1 ~ e x p  ( - - 2 C c o s  ca cos  ~t)ld(ffd~r 
00 (31) dO 

(-1)J +I (2AC) J-1 VB ~r~/2 ~r~/2 
. . . .  exp ( -  C cos ca cos ~) (cos ca)j+2 (cos ~,)l+ld~pd~ 

S~=1 J! Vj--2--I + B 4o 4o 
Es= - -  /2 /2 . . . . . . . . . . . . .  (32) 

f; 



S. G.  B O G D A N O V  A N D  A.  Z.  M E N S H I K O V  873 

flexion at various Q/lz values is shown. It is seen that 
secondary extinction increases if the mosaic spread 
and Q/lz increase. The secondary extinction coefficient 
depends on the neutron beam collimation to a lesser 
degree (Fig. 7). 

(b) The comparison with experiment 
Our calculated R ° and Rp values are related to the 

single-crystal spectrometer case where the scattered 
neutrons are detected by a fixed detector set in the 
rettexion position. These conditions correspond to 
those of using the crystal as a monochromator. Then, 
in order to correct theoretical formulae one can use 
the double-crystal spectrometer system where the first 
crystal is a monochromator and the second is a spec- 

ql, =t 

I ~.~ I, 
6 12 2 zlB 06 = "  '~'e 

Fig. 2. Integrated reflectivity versus neutron beam collimation 
at different mosaic spreads (plate in reflexion; Q/p=0.1,  
c=0.5). 

i men. In this case the reflexion curve may be detected 
by both 0 and 0-20 scanning methods. Obviously the 
data obtained by these methods do not coincide; what 
is more, each method provides the possibility of 
obtaining different information about the single-crystal 
reflectivity. We now consider this in detail. 

First of all, in order to carry out the experimental 
R ° measurement by a double-crystal spectrometer 
method it is necessary to choose as a monochromator 
a single crystal as perfect as possible. Then the white 
divergent neutron beam scattered by such a mono- 
chromator is dispersed. If such a beam impinges on the 
second crystal (specimen) and the reflexion curve is 
detected by the 0-scan method one can derive in 
accordance with (7) 

| ,0  ~ -" 

Rp , I"  p 

s 
/ 

/ /  
s' 

¢ 
t 

I 
I 

i / 
l 

/ / 
O,5 

I I I  ~ . . . .  -- -- - -  

, ;  / /  ~ a m '  . . . . . .  

I I 

Fig. 4. Peak single-crystal reflectivity versus Q/p  (plate in the 
reflexion, C=0"5, ~=8 ' ) :  dotted lines - / = c o n s t . ,  solid 
lines - 2 #  const. 

I b'll:;:'*,',-.. 
/ | /U  \ ",, ",, 

• _ / ' ,  " , , ' , ,  ',°Fil ",i':-'-, 
I I I  ", \ ' - .  _ 
lit ". "-.'-L 
I |  ", " ,  2 " - ,  

GI51-I ", " - .  " - .  "'--.,. 
I I 

0 !,0 2,o 3,0 ---.C 

Fig. 3. Integrated single-crystal reflectivity versus the size for 
various crystal shapes ( C = p D / 7 ,  Q//t=0.01, r/=8',  ~ ,=  
24'): solid lines - reflexion, dotted lines - transmission; 
(1) plate, (2) cylinder, (3) sphere. 

Es 

0,4 

%% %%%% 3 

0~ ' , ' , : - ,  / T  , . . . . - .  
- - -  = L ' _ - _ - _ - - - =  = =  

I I I 

0 1,0 2,0 3,0 4,0 
~C 

Fig. 5. Secondary extinction coefficient versus crystal 
size for various shapes ( C = p D / 7 ) :  solid lines - reflexion; 
dotted lines - transmission; (1) plate, (2) cylinder, (3) 
sphere. 
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1 
R°(o) = ~ . , -~ -P[0 ' ( a -1 )¢1-0 ]  

xnt(¢~)n2[(2a-1)¢l]d¢l, (33) 

where 0 is the rotation angle of the crystal, a (= tan  0/ 
tan 0M) is the dispersion parameter, 0M is the Wolf- 
Bragg angle of the monochromator. At a =  1 

l~_ooR°(Q)do=I~_ooP(O,Q)dQ (34) 

indicating the independence of the reflexion curve 
from the collimator divergences at and ~2. Exper- 
imentally such detection conditions have been used 
by Riste & Otnes (1969) and Dymond & Brockhouse Es 
(1970) for the measurement of integrated and peak 
reflectivities in the rotating crystal method and to 
verify the validity of the Bacon-Lowde (1948) 
formulae. 

If the reflexion curve is obtained by 0-20 scanning, 
the integrated reflectivity vs crystal rotation angle 
may be defined as 

~0(~) = - ~  - 1)~0~- ~o] 

x nt(~ot)nz[(2a- 1)qh+2Q]dct. (35) 

At a = 1 the area under the reflexion curve will describe 
the white divergent neutron beam reflectivity with the 
restricted collimation of the first and second collim- 
ators: 

IRO(~o)do=l~_~op(o,o)exp(_ 402 d~o. (36) ~. + ~ ,  
Consequently by the 0-20 scanning method the 
integrated reflectivity corresponding to the real condi- 
tions of the monochromator crystal is measured, i.e. 
by this method one can verify the validity of the 
formulae for the integrated reflectivity. 

There are literature references on the experimental 
verification of the formulae for the integrated and peak /~s 
reflectivities of the monochromatic, parallel neutron 
beam, e.g. Riste & Otnes (1969), Dymond & Brock- 
house (1970), Dorner (1971). There are few papers 0,6 
which have been devoted to the verification of the 
integrated reflectivity formulae presented in Table 1. 
In Fig. 8, some experimental results (after Popovici, 
Gheorghiu & Gelberg, 1968) in comparison with our 0.4 
theoretical curves are shown. As the experimental 
determination of R ° was relative, these points were 
scaled to fit the first to the theoretical curve. As one can 
see, the behaviour of the experimental and theoretical ~2 
curves is very similar and the fit between them is quite 
good. It should be noted that our calculated curves, 
which are represented in this figure, and the theoretical 
curves of Popovici et al. (1968) fit each other with 
great exactness. 

It is of natural interest to compare the secondary 
extinction coefficient values which have been obtained 
here with the calculations by Zachariasen's (1967) 

theory. He considered the general X-ray scattering by 
crystals for which the mosaic width fl may be compar- 
able to or less than the diffraction line width el of an 
ideal, small-size, perfect crystal. He has pointed out 
that if fl>>sl then the secondary extinction coefficient 
depends on the crystal mosaic parameter only (type I 
crystals); and if f l~et  it depends on mosaic block size 
only (type II crystals). If the crystal is neither type I 
nor type II both the mosaic spread and the crystal 
mosaic block size influence the secondary extinction. 
The applicability of Zachariasen's theory to neutron 
diffraction was discussed by Cooper & Rouse (1970) 

I I I 

4 8 16 32 6# 

Fig. 6. Secondary extinction coefficient versus single-crystal 
mosaic spread at different Q/p values (plate in reflexion; 
C = 0.5, 0ce = 24'). 

r/=4' 

l , '8 6 12 24 ~ 96 
-----a; 

Fig. 7. Secondary extinction coefficient versus neutron beam 
divergence at different crystal mosaic spreads in reflexion 
(a//z =0.05 ; C=0"5). 
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and Cooper, Rouse & Fuess (1973). In order to explain 
the experimental neutron data they slightly modified 
the Zachariasen equation for the secondary extinction 
coefficient and carried out the calculation of Es for a 
sphere-shaped single crystal of  ZnS which is, according 
to their data, a type I crystal with the mosaic param- 
eter g -  1/(2]/rcr/)= 1390_+ 360. For the comparison we 0 2 2 0.984 0-878 
have calculated Es for such a specimen too. The data 4 0 0 0.986 0.916 
are given in Table 3. There is some disagreement 4 2 2 0.987 0-936 
between our calculation and the data of Cooper et al. 0 4 4 0 . 9 8 8  0.948 

4 4 4 0 . 9 8 8  0-963 
(1973). Such disagreement may be due to two factors: 8 0 0 0"989 0.972 
(1) the g parameter  cannot  be determined quite exactly 8 2 2 0.989 0.975 
because of the pr imary extinction, which is present even 4 6 6 0.989 0.980 

8 4 4 0.989 0.982 in the best agreement between theory and experiment;  2 0 0 0.989 0-978 
(2) it is to be expected that at r/< 1' the formulae in 2 2 2 0.989 0.988 
Table 2 are not quite valid because of  the inapplic- 2 4 4 0.990 0-995 
abili ty of  the kinematic  approximation.  6 2 2 0.990 0-996 

6 4 4 0.990 0.998 
2 6 6 0 - 9 9 0  0.998 

10 0 0 0 - 9 9 0  0-999 
10 2 2 0 - 9 9 0  0-999 

R 

% 

1,00 

a75 

o,5r, 

O25 

s 
tiff 

2 4 8 16 ,52 ~ f '  

Fig. 8. The comparison between theoretical and experimental 
reflectivities of Pb (111) in transmission versus crystal 
mosaic spread (t = 0.9 cm). Experimental points are quoted 
from the paper by Popovici, Gheorghiu & Gelberg (1968). 

Y 

P0(0) 

Z 
i 

i \ J,/y,z~ 

Fig. 9. Geometry of neutron scattering by a spherical sample 
crystal with diameter D in forward scattering (20--0°). 
[The individual beam path in the crystal is defined as 
l = 2(D2/4 -y2 _ z 2) v2.] 

Table 3. The comparison of secondary extinction coeffi- 
cient values (E~) calculated by the formula (32) of Table 2 
with the data of Cooper, Rouse & Fuess (1973) 
[Es(CRF)] for the ZnS spherical single crystal o.f diam- 

eter D = 0 . 2 2  cm, 2=0 .873  A, 1/=0.7' 

h k l E~ E,(CRF) h k l E~ E~(CRF) 
1 1 1 0.984 0.883 
3 1 1 0.987 0.940 
1 3 3 0 - 9 8 8  0.957 
5 1 1 0.988 0.967 
5 3 3 0.989 0.977 
7 1 1 0 - 9 8 9  0-980 
1 5 5 0.989 0.981 
3 5 5 0.989 0-983 
7 3 3 0 - 9 8 9  0.985 
5 5 5 0 - 9 8 9  0-987 
9 1 1 0.989 0-988 
1 7 7 0.989 0.990 
7 5 5 0 - 9 8 9  0.990 
3 7 7 0.990 0.991 

11 1 1 0.990 0.992 
5 7 7 0.990 0.992 

The authors wish to acknowledge N. N. Lebedeva 
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A P P E N D I X  

We now derive the formulae presented in Tables 1 and 
2. As an example (Fig. 9) we shall consider most 
general variant  of  neutron scattering by spherical 
samples with diameter D in forward scattering (20= 
0°). The current of  scattered neutrons P1 may be 
written as follows 

Pi = I dPi  (A 1) 
J (S) 

where dP1 is the current of  neutrons scattered by an 
infinitesimal square dS of the sample surface in the 
vicinity of a point  r[(DZ/4-y2-zZ)VZ, y,z]; the integra- 
tion is made over the hemisphere S which is described 
by the equation 

0 2 
X 2 + " V 2 + Z 2  . . . . . .  4 '  x > 0 .  

The axis X coincides with the incident beam direction. 
We can express the infinitesimal current dPi,  via 

scattered neutron intensity Ii(y,z) in a point  r as: 

dP~=Ii(y,z)da (A2) 

where d• is the projection of  the infinitesimal square 
dS on the YOZ plane. Taking into account the obvious 
equation 

S(s) I~(y'z)dS= S(s~) ll(y, z)do- 

- l(s~) l ll(y'z)dY dz , ( A 3 )  
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where S~ is the projection of square S on the YOZ 
plane, and introducing the changes of variable 

D . 
z = ~ sm ~o 

D (A4) 
y = -~-cos (a sin (0 

we obtain 

P1 dz dyll(y, z) 
d--Dl2 J-VD2--i74Z-z 2 

f'nl2 Inl2 
I1(~o, V) cos2 tp cos vdq)dv. (A5) = D210 d0 

Considering I1(~0, V) as the scattering intensity from the 
plate-shaped sample of thickness 2 ( D 2 / 4 - y 2 -  z2)1/2 = 
D cos ~0 cos V, one can derive analytical expressions 
for reflectivities and secondary extinction coefficients. 
Thus for I~(~0, ~) we have 

I,(~p, V) =½Io(0) exp ( - p D  cos ~p cos V) 

x [1 - e x p  ( - 2 r D  cos (o cos V)] 
where 

r + 
Then taking into account Io(O)rcD2/4 = P0(0) we obtain 
the reflectivity of a spherical single crystal 

P1 2 In/2 In/2 
- exp ( - p D  cos ~p cos V) P(o,A)- P o ( 0 )  ~ ,~o ..,o 

x [1 --exp (--2rD cos tp cos V)] cos2 tp cos vdq~dv. 

(A6) 

We now write with respect to (11) the integrated reflec- 
tivity taking into account the neutron beam divergence 

Ro= 21~12 I nl2 
- -  d~od~u cos 2 ~o cos ~, 
71:,0 d0 

x exp (-- / tD cos ~0 cos ~v) oo dA exp - ct~ ] 

A 2  [,-exp{[- +Ooos,cos exp (_ 
(A7) 

The improper integral in (A7) is calculated by ex- 
panding as a series the term in square brackets" 

( >) ~. ( - 1 )  J+l 2 Q D c o s ~ p c o s v  J 

j=l j!  2 ~ r /  

x f:oo exp [ -  (a2 + ~ g )  A21 dA 

o o  = .S. ( -  1)j+l 2QD cos tp cos V 

i=1 J[ 2 ~ r /  / j+ 4r/2 
2 

(A8)  

Introducing the notation defined in the footnote to 
Table 1 we obtain (25). In order to derive the ex- 
pression for the secondary extinction coefficient we 
calculate the integrated reflectivity without taking 
into account the secondary extinction: 

I~d(~, V) = Io(O)rD cos tp cos V exp ( - # D  cos tp cos V), 

I?S? P t d ( O , A ) = _  - P~a 4 rD cos a tp cos 2 V 
eo(0) 

x exp ( - /~D cos rp cos v)dtpd~, 

4I?I? 
R°a = -~- dtpd V cosa (P cos2 V 

x exp ( - / z D  cos ~0 cos V) 

xf~,~_ QD 1 2 -[/~-~r] exp [ -  ( 2~ -  + ~-~2 ) A2] dA 

4 AC C'q2r '#2 
. . . .  2 ~  ~ ~ COS a(ocos zV 

7t ~ d0 dO 

× exp ( -  C cos ~p cos v)d~0dv. (A9) 

By dividing (25) by (A9) we obtain (32). 
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